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1
THIN FILM TRANSISTOR

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation-in-part of U.S. applica-
tion Ser. No. 13/563,930, filed Aug. 1, 2012, now allowed,
which claims the benefit of U.S. Provisional Application No.
61/514,887, filed Aug. 3, 2011, and claims the benefit of U.S.
Provisional Applications Nos. 61/931,778, filed Jan. 27,
2014, and 0f 61/921,912, filed Dec. 30, 2013, all of which are
hereby incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The present disclosure generally relates to thin film tran-
sistors.

BACKGROUND

Displays can be created from an array of organic light
emitting devices (“OLEDs”) each controlled by individual
circuits (i.e., pixel circuits) having transistors for selectively
controlling the circuits to be programmed with display infor-
mation and to emit light according to the display information.
Thin film transistors (““TFTs”) fabricated on a substrate can be
incorporated into such displays.

Mobility characterizes the responsiveness of a charge car-
rier in the presence of an electric field. Mobility is generally
expressed in units of cm?/V s. For transistors, the mobility of
the channel region provides a measure of the performance of
the transistor “on” current, e.g., the current that can be sup-
plied by the transistor. In thin film transistors, a layer of
semiconductor material is generally utilized to form the chan-
nel region.

Development of OLED display devices is challenged by
the demand for a suitable drive transistor in the pixel circuits.
Amorphous silicon (a-Si), the transistor channel material that
sources the voltage to switch AM-LCD pixels, has a low
mobility (~0.1 em® V= s71). Organic semiconductor channel
materials are attractive for use as pixel circuit drive transistors
for their homogeneity, low cost, and the variety of means by
which they can be deposited, but their best mobilities are
similar to that of a-Si. In a typical TFT architecture, low-
mobility channel layers would require a large source-drain
voltage to drive the necessary current. This consumes power
in the transistor (as opposed to light production in the OLED),
compromising the power savings.

P-type a-Si TFTs can have even lower mobility values, and
can be as low as 0.01 cm® V™' 57"

SUMMARY

According to one embodiment, a thin film transistor com-
prises a semiconductor layer; first and second dielectric lay-
ers disposed on opposite sides of the semiconductor layer; a
first metal layer forming first and second terminals on the
opposite side of the first dielectric layer from the semicon-
ductor layer, one of said first and second terminals extending
through said first dielectric layer into contact with the semi-
conductor layer, the first and second terminals and the first
dielectric layer forming a capacitor; and a second metal layer
forming a third terminal on the opposite side of the second
dielectric layer from the semiconductor layer. In one imple-
mentation, the first and second terminals are source and drain
terminals, and the third terminal is a gate terminal. The first
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metal layer may be divided to form the first and second
terminals. The third terminal may be shared with one of the
first and second terminals.

In another embodiment, a thin film transistor comprises a
semiconductor layer; first and second dielectric layers dis-
posed on opposite sides of the semiconductor layer, at least
the second dielectric layer having openings therein; a first
metal layer forming a first terminal on the opposite side of the
first dielectric layer from the semiconductor layer; and a
second metal layer forming a second terminal on the opposite
side of the second dielectric layer from the semiconductor
layer, with the second metal layer extending through the
openings in the second dielectric layer to contact the semi-
conductor layer.

The foregoing and additional aspects and embodiments of
the present invention will be apparent to those of ordinary
skill in the art in view of the detailed description of various
embodiments and/or aspects, which is made with reference to
the drawings, a brief description of which is provided next.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the drawings.

FIG. 1 illustrates a block diagram of a bottom gate thin film
transistor having a channel region including a nanoconductor
layer.

FIG. 2 illustrates a block diagram of a top gate thin film
transistor having a channel region including a nanoconductor
layer.

FIG. 3A is a schematic illustration of a cross-section view
of'a thin film transistor 110 having a channel region including
a nanoconductor layer.

FIG. 3B is a schematic illustration of a thin film transistor
similar to the one illustrated in FIG. 3A, but with a shorter
nanoconductor layer.

FIG. 4A is a schematic illustration of a top view of a
nanoconductor layer with a characteristic length exceeding
the separation between the drain and source terminals of the
TFT.

FIG. 4B is a schematic illustration of a top view of the
nanoconductor layer similar to FIG. 4A, but where the indi-
vidual nanoconductors are imperfectly aligned with a direc-
tion oriented from the drain terminal to the source terminal.

FIG. 4C is a schematic illustration of a top view of the
nanoconductor layer similar to FIG. 4A, but where the char-
acteristic length of the nanoconductor layer is less than the
separation of the drain and source terminals of the TFT.

FIG. 5 is a flowchart illustrating an example process for
manufacturing a thin film transistor having a channel region
including a nanoconductor layer.

FIG. 6 is a diagrammatic cross section of a thin film tran-
sistor having a channel region including a nanoconductor
layer.

FIG. 7 is a pair of sectional views of two typical Metal-
Insulator-Metal (MIM) capacitors.

FIG. 8 is a sectional view of a structure having a high
capacitance value.

FIG. 9 is a plan view of the structure shown in FIG. 8.

FIG. 10 is a sectional view of a modified structure having a
high capacitance value.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments have been
shown by way of example in the drawings and will be
described in detail herein. It should be understood, however,
that the invention is not intended to be limited to the particular
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forms disclosed. Rather, the invention is to cover all modifi-
cations, equivalents, and alternatives falling within the spirit
and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION

FIG.11illustrates a block diagram of'a bottom-gate thin film
transistor 10 having a channel region 31 including a nanocon-
ductor layer 20. The thin film transistor 10 can generally be
formed by deposition or a similar process on a substrate 12 of
a display. For example, the substrate 12 can be a back plane
substrate or an encapsulation glass substrate, or another suit-
able substrate providing a surface on which the TFT 10 can be
developed. A gate terminal 14 is formed on the substrate 12.
The gate terminal 14 is a conductive electrode for receiving
signals to operate the TFT 10. The signals applied to the gate
terminal 14 can be binary “high” or “low” signals turning the
TFT 10 on or off or can be signals at a plurality of levels to
control the amount of current conveyed through the drain and
source terminals.

A dielectric layer 16 (“insulating layer”) is developed over
the gate terminal 14 to prevent current flow to or from the gate
terminal 14 and the channel region 31 of the TFT 10. The
dielectric layer 16 can be developed by a deposition process.
A layer of nanoconductors, i.e., a nanoconductor layer 20, is
then placed (“positioned”) on the dielectric layer 16. The
nanoconductor layer 20 generally includes a plurality of
nanoconductors and can include nanowires, nanofibers, and/
or nanotubes, such as single-wall nanotubes (“SWNT”),
double-wall nanotubes (“DWNT”) and/or multi-wall nano-
tubes (“MWNT”). The nanoconductors can be formed of
Carbon and/or Silicon and can optionally incorporate doping
materials to modify the conductive properties of the nanocon-
ductors. The nanoconductor layer 20 can be a single layer
(i.e., monolayer) of nanoconductors.

A semiconductor layer 30 is developed over the nanocon-
ductor layer 20. Together, the semiconductor layer 30 and the
nanoconductor layer 20 form the two-layer channel region 31
of'the TFT 10. For example, the semiconductor layer 30 can
be made from organic or inorganic semiconductor materials.
The semiconductor layer 30 can be formed of, for example,
amorphous silicon or polysilicon. The semiconductor layer
30 can also incorporate doping to modify the mobility char-
acteristics of the TFT 10.

The drain terminal 32 and source terminal 34 of the TFT
are then formed on the semiconductor layer. The drain termi-
nal 32 and the source terminal 34 are each formed of a con-
ductive material suitable for conveying electrical energy. The
terminals 32, 34 can be, for example, metallic. A channel
separation distance is defined by the distance between the
drain terminal 32 and the source terminal 34. The channel
separation distance is one parameter that influences the
operation performance of the TFT 10.

The TFT 10 is referred to as a bottom-gate TFT because the
gate 14 is formed directly on the substrate 12, and thus the
side of the TFT 10 having the gate 14 is referred to as a bottom
side of the TFT 10, while the side of the TFT 10 having the
drain and source terminals 32, 34 is referred to as a top side of
the TFT 10.

FIG. 2 illustrates a block diagram of a top-gate thin film
transistor 40 having a channel region 31 including a nanocon-
ductor layer 20. The top-gate TFT 40 is manufactured by
applying the layered components discussed in connection
with the bottom-gate TFT 10 shown in FIG. 1 in the reverse
order. The drain terminal 32 and source terminal 34 are each
formed on the substrate 12. The semiconductor layer 30 is
then deposited on the drain and source terminals 32, 34. The
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nanoconductor layer 20 is then applied to the semiconductor
layer 30 to form the two-layer channel region 31. By applying
the nanoconductor layer 20 to the surface of the semiconduc-
tor layer 30 opposite the drain and source terminals 32, 34, the
nanoconductor layer 20 is positioned to lack any direct con-
tact with the drain and source terminals 32, 34. Thus, during
low field effect operation (e.g., low gate-source voltages), the
performance of the TFT is dominated by the semiconductor
layer because the nanoconductors lack any direct contact with
the source or drain terminal of the TFT. The TFT therefore
offers good leakage current performance, similar to the per-
formance of the semiconductor layer 30. The dielectric layer
16 is then developed on the nanoconductor side of the channel
region 31 and the gate terminal 14 is formed on the dielectric
layer 16.

Moreover, the nanoconductors the nanoconductor layer
can change the polarity of the TFT device. For example,
carbon nanotubes have a p-type characteristic. An amorphous
silicon (a-Si) TFT formed with its channel region including
carbon nanotubes can therefore have a p-type characteristic.
A p-type a-Si TFT so formed can be highly beneficial to a-Si
TFT applications due to the enhanced mobility of such a
p-type transistor compared to conventional p-type TFTs. The
enhanced mobility of such a p-type transistor compared to
conventional p-type TFTs can advantageously allow such
p-type a-Si TFTs to be utilized in AMOLED display applica-
tions previously dominated by n-type TFTs and thereby
enable p-type pixel circuit architectures.

FIG. 3A is a schematic illustration of a cross-section view
of'a thin film transistor 110 (“TFT”) having a channel region
131 including a nanoconductor layer 120. In the schematic
illustration in FIG. 3A, the components of the TFT 110 are
numbered with reference numbers one-hundred higher than
the corresponding components of the TFT 10 in the block
diagram of FIG. 1. The TFT 110 is formed on a substrate 112,
which can be substrate of a display, such as a back plane
substrate, a transparent planarization substrate, or an encap-
sulation glass substrate. A gate terminal 114 is formed on the
substrate 112. The gate terminal 114 can be a conductive
terminal with characteristics similar to the characteristics of
the gate terminal 14 described in connection with FIG. 1. A
dielectric layer 116 is developed on the gate terminal 114 to
insulate the gate terminal 114 from the channel region 131 of
the TFT 110. The dielectric layer 116 can be an electrical
insulator.

The channel region 131 of the TFT has two layers: a nano-
conductor layer 120 and a semiconductor layer 130. The
semiconductor layer 130 separates the nanoconductor layer
120 from direct contact with the drain terminal 132 or the
source terminal 134. The nanoconductor layer 120 generally
includes a plurality of nanowires, nanofibers, and/or nano-
tubes. The individual nanoconductors (“nanoparticles™) in
the nanoconductor layer 120 are placed on the dielectric layer
116 in a thin film. The individual nanoconductors are each
desirably aligned generally in a direction oriented from the
drain terminal 132 to the source terminal 134 to increase the
efficacy of charge transfer between the drain and source ter-
minals 132, 134.

FIG. 3B is a schematic illustration of a thin film transistor
111 similarto the one illustrated in F1IG. 3 A, but with a shorter
nanoconductor layer 121. The schematic illustration in FIG.
3B illustrates that the drain and source terminals 132, 134 can
overlap the nanoconductor layer 121 by varying amounts. By
adjusting the dimensional extent of the nanoconductor layer
121 along a direction oriented from the drain terminal 132 to
the source terminal 134, the charge transfer characteristics of
the two-layer channel region 131 can be modified. For
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example, the two-layer channel region 131 can provide for
relatively more charge transfer (e.g., increased mobility) by
increasing the dimensional extent (e.g., length) of the nano-
conductor layer 121, by increasing the density of nanocon-
ductors within the nanoconductor layer 121, and/or by
increasing the amount of overlap with the drain terminal 132
and/or source terminal 134. As discussed herein, the amount
of'overlap between the nanoconductor layer 121 and the drain
and source terminals 132, 134 refers to the amount of surface
area of the drain/source terminals 132, 134 which is separated
from the nanoconductor layer 121 only by a vertical path
through the semiconductor layer 130. In FIGS. 3A and 3B,
the vertical direction through the semiconductor layer 130 is
the direction outwardly normal to the substrate 112.

Aspects of the present disclosure further provide that the
nanoconductor layer 121 can be configured with a dimen-
sional extent along the direction oriented from the drain ter-
minal 132 to the source terminal 134 to not overlap either of
the drain or source terminals 132, 134. For example, the
length of the nanoconductor layer 121 can be less than the
separation distance between the drain terminal 132 and the
source terminal 134. Additional configurations of the nano-
conductor layer 121 are illustrated generally by the top view
schematic illustrations in FIG. 4A through 4C.

FIG. 4A is a schematic illustration of a top view of a
nanoconductor layer with a characteristic length exceeding
the separation between the drain and source terminals of the
TFT. While the nanoconductor layer 20 is illustrated for sche-
matic purposes with individual nanoconductors (e.g., the
nanoconductors 21, 22) of uniform length and each aligned
between the drain terminal 32 and the source terminal 34, the
present disclosure is no so limited. Aspects of the present
disclosure apply to configurations with a nanoconductor layer
20 having individual nanoconductors of non-uniform length
and orientation. The schematic illustration of the nanocon-
ductor layer 20 in FIG. 4A also illustrates that the individual
nanoconductors (e.g., the nanoconductors 21, 22) are dis-
posed in a monolayer. The nanoconductor layer 20 can be a
dispersed monolayer of nanoconductors that covers less than
afull cross-sectional area of the two-layer channel region. For
example, the gaps between the individual nanoconductors
(e.g., the nanoconductors 21, 22) can be of roughly the same
size as the widths of the nanoconductors themselves such that
the individual nanoconductors (e.g., the nanoconductors 21,
22) in the nanoconductor layer 20 cumulatively cover
approximately half (e.g., 50%) of the two-layer channel
region. In an implementation, any gaps between the indi-
vidual nanoconductors (e.g., the nanoconductors 21, 22) are
filled by the semiconductor layer deposited over the nanocon-
ductor layer 20. The nanoconductor layer 20 can be imple-
mented with coverage of greater or lesser than 50% coverage,
such as 30% coverage or 70% coverage. Generally, increas-
ing the density of the monolayer of nanoconductors (e.g., the
fraction of coverage) can increase the charge transfer charac-
teristics of the two-layer channel region.

In FIGS. 4A through 4C, the hashed blocks labeled “D”
and “S” represent the positions of the drain terminal 32 and
source terminal 34, respectively. The drain terminal 32 has a
channel side 33 and the source terminal 34 has a channel side
35. The distance between the channel side 33 of the drain
terminal 32 and the channel side 35 of the source terminal 34
can be referred to for convenience as a channel separation
distance. As shown in FIG. 4A, the length of the nanocon-
ductor layer 20 can be greater than the channel separation
distance between the drain terminal 32 and the source termi-
nal 34 such that the drain terminal 32 and the source terminal
34 each overlap at least a portion of the nanoconductor layer
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20. By overlapping at least a portion of the nanoconductor
layer 20 with the drain/source terminals 32, 34, the nanocon-
ductor layer 20 advantageously allows for a vertical connec-
tion path through the semiconductor layer to enhance the
charge transfer characteristics of the two-layer channel
region.

FIG. 4B is a schematic illustration of a top view of the
nanoconductor layer similar to FIG. 4A, but where the indi-
vidual nanoconductors (e.g, the nanoconductors 21, 23) are
imperfectly aligned with a direction oriented from the drain
terminal 32 to the source terminal 34. Because the nanocon-
ductor layer 20 is not directly connected to either of the
drain/source terminals 32, 34 (i.e., the nanoconductor layer
20 is connected to the drain/source terminals only through the
semiconductor layer), the charge transfer characteristics of
the two-layer channel region are relatively insensitive to pre-
cise alignment requirements of the individual nanoconduc-
tors (e.g., the nanoconductor 23). Thus, the nanoconductors
(e.g., the nanoconductors 21, 23) generally enhance the effec-
tive mobility of the two-layer channel region by conveying
charges to/from the drain/source terminals 32, 34 through the
semiconductor layer such that the charge transfer character-
istics of the thin film transistor is not limited by the mobility
of the semiconductor layer.

FIG. 4C is a schematic illustration of a top view of the
nanoconductor layer similar to FIG. 4A, but where the char-
acteristic length of the nanoconductor layer is less than the
separation of the drain and source terminals of the TFT. In the
schematic illustration in FIG. 4C, the individual nanoconduc-
tors (e.g., the nanoconductors 24, 25) are illustrated as having
a length less than the channel separation distance. In the
configuration illustrated in FIG. 4C, the nanoconductor layer
20 does not overlap either the drain terminal 32 or the source
terminal 34. Thus, a charge transfer path does not exist from
the drain/source terminals 32, 34 to the nanoconductor layer
20 that includes only a vertical charge transfer path through
the semiconductor layer. For example, in the configuration
illustrated in FIG. 4C, the effective mobility of the two-layer
channel region can be limited by the requirement that charges
are transferred laterally through the

FIG. 5 is a flowchart 50 illustrating an example process for
manufacturing a thin film transistor (“TF1”") having a channel
region including a nanoconductor layer. A gate terminal of a
TFT is formed on a substrate in the first step 51. Next, a
dielectric layer is developed on the gate terminal 54 in step 52.
The dielectric layer coats the exposed surfaces of the gate
terminal so as to prevent the two-layer channel region, which
is deposited next, from directly contacting the gate terminal.
A dispersed layer of nanoconductors, such as nanotubes or
nanowires, are positioned on the dielectric layer in step 53. As
discussed in connection with FIGS. 3A through 3C, the dis-
persed layer of nanoconductors can be a monolayer covering
less than the full exposed area of the channel region. In step
54, a semiconductor layer is deposited on the nanoconductor
layer and any exposed regions of the dielectric layer. The
semiconductor layer can include amorphous silicon. The
semiconductor layer and the nanoconductor layer thus jointly
form the two-layer channel region. A source terminal and a
drain terminal are then formed on the semiconductor layer in
step 55. The source terminal and the drain terminal are thus
formed so as to lack a direct connection with the nanocon-
ductors.

The flowchart 50 is an example of a process for manufac-
turing a bottom-gate TFT (i.e., the gate terminal is deposited
on the substrate). However, a similar process can be adapted
to manufacture a top-gate TFT having a two-layer channel
region incorporating nanoconductors that do not directly con-
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tact the drain or source terminals, such as the top-gate TFT 40
shown in FIG. 2. For example, a drain and a source terminal
can be formed on a substrate. A semiconductor layer can be
deposited over the drain and source terminals, and a nano-
conductor layer can be placed over the semiconductor layer,
thus forming a two-layer channel region. A dielectric layer
can be deposited over the two-layer channel region, and a gate
terminal can be formed on the dielectric layer.

FIG. 6 illustrates a modified structure in which metallic
source and drain terminals 61 and 62 (e.g., aluminum having
a thickness of about 100 nanometers) are formed on respec-
tive layers 63 and 64 of p+ silicon (e.g., with a thickness of
about 35 nanometers). Directly beneath the layers 63 and 64
is a layer 65 of a semiconductor material (e.g., alternating
nanocrystalline and amorphous silicon having a total thick-
ness of about 30 nanometers), which is deposited on top of'a
layer 66 of nanoconductors such as carbon nanotubes (e.g.,
with a thickness of about 1 to 2 nanometers). The nanocon-
ductors are deposited on top of a dielectric layer 67 (e.g.,
thermal silicon dioxide with a thickness of about 100 nanom-
eters), which in turn is deposited on a substrate 68 (e.g., p+
silicon). The bottom surface of the substrate 67 is covered
with a conductive back contact 69 (e.g., aluminum with a
thickness of about 100 nanometers).

An exemplary process for forming the structure shown in
FIG. 6 is as follows:

1. Thermal P* Silicon Substrate Cleaning

(a) Ultrasonic cleaning of the substrate in acetone for 10

minutes, then in isopropyl alcohol (IPA) for another 10

minutes. This process is repeated twice.

(b) Substrate is rinsed with deionized water and dried with

nitrogen. Note: The substrate is put on a hotplate (~90°

C.) for 10 minutes before the next step.

2. Carbon nanotube coating

(a) Substrate treatment using amino-propyl tri-ethoxy

silane (APTES).

Before coating, the substrate is immersed into APTES
solution (1% v/v in IPA) for 20 minutes, then the
substrate is rinsed with IPA and dried with nitrogen.

(b) Dip coating carbon nanotubes on APTES-treated sub-

strate

The substrate is immersed into carbon nanotubes solu-
tion for 15 minutes.

Then the substrate is rinsed with abundant deionized
water and dried with nitrogen.

The carbon nanotube-coated substrate is baked on a
hotplate at 180° C. for 20 minutes before it is loaded
into a plasma enhanced chemical vapor deposition
(PECVD) cluster.

3. Nanocrystalline amorphous silicon (nc-Si) and SiNx depo-
sition using PECVD

(a) nc-Si (~30 nm.)

Gas: SiH,/H,=40/200 sccm; Pr=900 mtorr; R =2 W;
T=210 C (set); Rate=4.07 nm/min.

(b) SiNx (150 nm)

Gas: SiH,/NH,/N,=5/100/50 sccm; Pr=1000 mtorr;
R~=15 W; T=250 C (set); Rate=15 nm/min.

4. SiN, Via (Mask#1)

(a) Photolithography

Photoresist: NLOF 2035

Spin: 500 rpm for 10 seconds followed by 4000 rmp for
90 seconds.

Soft bake: 110° C. for 1 minute

Contact: low vacuum.

Exposure: 5.4 seconds.

Post-exposure bake: 110° C.

Develop: AZ300 MIF for ~30 seconds.
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(b) Wet etching SiN, using buffered hydrofluoric acid

(BHF).

The substrate is immersed in a BHF solution (10% v/v)
for 27 seconds.

(¢) Strip of Photoresist

The substrate is immersed in AZ KWIT stripper for 10
minutes, then rinsed by deionized water, acetone and
IPA.

5. P* Deposition (~35 nm thickness)

Gas: SiH,/B,H/H2=1.8/1.8/200 sccm; Pr=1500 mtorr;
R =65 W; T=250 C, (set); Rate=7.7 nm/min.

6. S/D metal deposition (aluminum, ~100 nm thickness)
7. S/D patterning (Mask #1")

Photoresist: AZ 3312

Spin: 700 rpm for 10 seconds followed by 4000 rmp for 60

seconds.

Soft bake: 90° C. for 1 minute.

Contact: low vacuum.

Exposure: 4 seconds.

Post-exposure bake: 120° C. for 1 minute.

Develop: AZ300 MIF for ~15 seconds.

Etching: ~3 minutes in PAN etchant at room temperature.

Strip: Rinsed in AZ KWIT stripper for 4 minutes, then

rinsed with deionized water, acetone and IPA.

8. Separation of P using S/D Metal as hard mask.

RIE dry-etching P+ silicon:

R~50 W; P,=20 mtorr; CF,/H,=20/3 sccm; rate=~0.43

nm/s

9. Device separation and isolation (Mask #2)

(a) Photolithography

Photoresist: AZ 3312.

Spin: 700 rpm for 10 seconds followed by 4000 rmp for
60 seconds.

Soft bake: 90° C. for 1 minute.

Contact: low vacuum.

Exposure: 4 seconds.

Post-exposure bake: 120° C. for 1 minute.

Develop: AZ300 MIF for ~15 seconds.

(b) Dry-etching SiN,/Si/carbon nanotubes.

R =125 W; P =150 mtorr; CF,/O0,=43/5 sccm; rate=4
nm/s.

10. Back Contact Metal Deposition (aluminum, ~100 nm
thickness)

(a) Removal of back thermal oxide.

The watfer front side is protected by PR AZ3312 before
it is immersed into BHF (10% v/v) for 4 minutes.

(b) Metal deposition on the back side of the wafer.

After the thermal oxide on the back side of the wafer is
removed by BHF, the wafer is loaded into a vacuum
chamber immediately for the metal deposition.

In FIG. 7, a capacitance is formed between a semiconduc-
tor layer and at least one of two metal layers located on
opposite sides of the semiconductor layer. Each metal layer is
separated from the semiconductor layer by a dielectric layer.
The main challenge is that the semiconductor is very resistive
and, therefore, the RC delay associated with charging the
capacitor will be high, resulting in lower frame rate or hys-
teresis.

To avoid the high RC delay, a three-terminal capacitor is
used, as illustrated in FIGS. 8 and 9. The first metal layer, on
one side of the semiconductor layer, is separated from the
semiconductor layer by afirst dielectric layer and forms a first
terminal C that controls the resistivity of the semiconductor
layer. The second metal layer, on the other side of the semi-
conductor layer, is separated from the semiconductor layer by
a second dielectric layer. The second metal layer is divided to
form second and third terminals B and A, forming a capacitor
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between terminals B and A. Terminal A extends through the
second dielectric layer to contact the semiconductor layer.

In one example, terminal C is connected to a low or high
voltage line in the panel, depending on the type of semicon-
ductor (for example, low for p-type and high for n-type). In
this case, the semiconductor layer resistance is significantly
lowered by charge accumulation (or depletion). In another
example, terminal C is shared with another terminal (B or A).
In this case, one of those terminals has a voltage that reduces
the resistance of the semiconductor material, depending on
the type of the semiconductor.

In FIGS. 8 and 9 there are two contacts between the termi-
nal A and the semiconductor layer, but one contact or more
than two contacts can work as well (depending on the avail-
able area).

The order of layers can change, and FIGS. 8 and 9 show one
example of the 3-terminal capacitor.

The voltage on the control terminal of the capacitor can be
a fixed voltage or a toggling voltage. In the case of a toggling
voltage, one can control the RC delay of charging and dis-
charging the capacitance. For example, one can use a voltage
that reduces the RC delay during charging of the capacitor,
and then use a voltage for a holding period that makes the
capacitance more stable. In this case, the characteristics of the
capacitance are not changed significantly by a high voltage
difference bias stress.

FIG. 10 shows another structure that provides a high
capacitance value without adding extra processing steps to
the fabrication. Since the second dielectric 2 is generally
thicker than the semiconductor layer, the traditional way of
having stacked dielectric results in a smaller capacitor than
using stacked semiconductor and dielectric. Here, the second
dielectric is etched during patterning of that dielectric layer,
and then the metal for the electrode B is deposited to make
contact with the semiconductor layer through openings in the
pattern. To have consistent capacitance, the electrodes B and
A can be connected in a way that the voltage across the two
electrodes A and B is always higher or lower than the thresh-
old voltage of the formed metal-insulator-semiconductor
capacitor. Thus, the semiconductor layer will always act as an
insulator or conductor layer.
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While particular embodiments and applications of the
present invention have been illustrated and described, it is to
be understood that the invention is not limited to the precise
construction and compositions disclosed herein and that vari-
ous modifications, changes, and variations can be apparent
from the foregoing descriptions without departing from the
spirit and scope of the invention as defined in the appended
claims.

What is claimed is:

1. A thin film capacitor comprising

a semiconductor layer having a controllable resistance,

first and second dielectric layers disposed on opposite sides
of the semiconductor layer,

a first metal layer forming first and second terminals on the
opposite side of the first dielectric layer from the semi-
conductor layer, said first terminal extending through
said first dielectric layer into contact with the semicon-
ductor layer, said second terminal not contacting said
semiconductor layer

a second metal layer forming a third terminal on the oppo-
site side of the second dielectric layer from the semicon-
ductor layer; and

a voltage source coupled to one of said second and third
terminals for reducing the resistance of said semicon-
ductor layer, and the other of said second and third
terminals forming a capacitor with said semiconductor
layer.

2. The thin film capacitor of claim 1, wherein the first and
second terminals are source and drain terminals, and said
third terminal is a gate terminal.

3. The thin film capacitor of claim 1 in which said first
metal layer is divided to form said first and second terminals.

4. The thin film capacitor of claim 1 in which said third
terminal is shared with one of said first and second terminals.

5. The thin film capacitor of claim 1 in which said second
and third terminals are connected, and a capacitor is formed
between said semiconductor layer and said second and third
terminals.

6. The thin film capacitor of claim 1 in which a source of a
toggling voltage is connected to a terminal of said thin-film
capacitor.



